Math, asked by muttajain602, 11 months ago

prove that 3+√2 is irrational number​

Answers

Answered by khushi0851
2

Here is your answer user.

Attachments:
Answered by amitkumar44481
0

 \bold \red \star  \:  \underline{Given:-}

  \:  \:  \:  \:  \: \tt{Prove \: that \: \red{ 3 +  \sqrt{2}} \: is  \: }  \:  \:  \\    \:  \: \tt{ \:  \:  \: irrational \: no.} \\ \\

 \bold \red \star  \:  \underline{Solution:-}

 \tt{ \:  \:  \:   \:  \:  Let's  \: assume \:  \red{ 3+ \sqrt{2}} \: is \: a \:}  \\  \tt { \:  \:  \:   \:  \:  rational \: no. }  \\ \\

 \tt{ \:  \:  \:  \:  \: 3 +  \sqrt{2}  =  \frac{p}{q} } \\  \\   \tt{     \:  \:  \:  \:  \:   \sqrt{2}  =  \frac{p - 3q}{q} } \\  \\

\rule{190}2

 \\  \tt{     \:  \:  \:  \:  \:    Here, We  \: can  \: see \:  that \:  \sqrt{2}  \: is }  \\ \tt{      \:  \:  \:  \:  \:  an \: irrational \: no \: but \:  \frac{p - 3q}{q} } \\  \tt{      \:  \:  \:  \:  \:      is \: a \: rational \: no.}

 \tt{      \:  \:  \:  \:  \:     So, Our \:  assumption  \: is \: wrong }  \\  \tt{    \:  \:  \:  \:  \:   \red{3+  \sqrt{2}}  \: is  \: an  \: irrational  \: no.} \\  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:   \tt{ \red{H}ence \:   \red{P}roved.}

Attachments:
Similar questions