Math, asked by ha4sh062ip, 11 months ago

Prove that (3 - 4sin^2 A)/cos^2A= 3-tan^2A​

Answers

Answered by rajsingh24
71

\huge{\green{\underline{\red{\mathbf{ANSWER:-}}}}}

Let theta be 'A'

Given=> 3 - 4sin²A/cos²A = 3 - tan²A

LHS

=> (3 - 4sin²A)/cos²A

=> [3 - 4(1 - cos²A)]/cos²A

=> (3 - 4 + 4cos²A)/cos²A

=> (4cos²A - 1)/cos²A

=> [3cos²A + (cos²A - 1)]/cos²A

=> (3cos²A - sin²A)/cos²A

=> 3cos²A/cos²A - sin²A/cos²A

=> 3 - tan²A

=> RHS

. '. LHS = RHS.

\huge{\purple{\underline{\pink{\mathbf{Thanks.}}}}}

Similar questions