Math, asked by anjumafreengmailcom, 20 days ago

Prove that 3+5√2 is an irrational numbers

Answers

Answered by SuYaSh91555
1

Answer:

Given: 3 + 2√5

To prove: 3 + 2√5 is an irrational number.

Proof:

Let us assume that 3 + 2√5 is a rational number.

So it can be written in the form a/b

3 + 2√5 = a/b

Here a and b are coprime numbers and b ≠ 0

Solving 3 + 2√5 = a/b we get,

=>2√5 = a/b – 3

=>2√5 = (a-3b)/b

=>√5 = (a-3b)/2b

This shows (a-3b)/2b is a rational number. But we know that But √5 is an irrational number.

so it contradictsour assumption.

Our assumption of 3 + 2√5 is a rational number is incorrect.

3 + 2√5 is an irrational number

Hence proved

Step-by-step explanation:

Hope It Helps You:)

Answered by prajwaldm8151
1

Step-by-step explanation:

rational no × irrational =irrational

5 × √2 = irrational

rational no + irrational = irrational

3 + 5√2 = irrational

Similar questions