prove that √3-√5 is irrational number
Answers
Answered by
1
HOLA
==================
Let us assume √3 - √5 as rational
![\sqrt{3} - \: \sqrt{5} = \: \frac{a}{b} \\ \\ square \: on \: both \: sides \\ \\ ( \sqrt{3 \: } - \: \sqrt{5} ) {}^{2} = (\: \frac{a}{b} ) {}^{2} \\ \\ ( 3 - \: 5 \: ) \: = \: \frac{a {}^{2} }{b {}^{2} } \\ \\ \: \frac{a { }^{2 } - \: 5}{b {}^{2} - 3 } \sqrt{3} - \: \sqrt{5} = \: \frac{a}{b} \\ \\ square \: on \: both \: sides \\ \\ ( \sqrt{3 \: } - \: \sqrt{5} ) {}^{2} = (\: \frac{a}{b} ) {}^{2} \\ \\ ( 3 - \: 5 \: ) \: = \: \frac{a {}^{2} }{b {}^{2} } \\ \\ \: \frac{a { }^{2 } - \: 5}{b {}^{2} - 3 }](https://tex.z-dn.net/?f=+%5Csqrt%7B3%7D++-++%5C%3A++%5Csqrt%7B5%7D++%3D++%5C%3A++%5Cfrac%7Ba%7D%7Bb%7D++%5C%5C++%5C%5C+square+%5C%3A+on+%5C%3A+both+%5C%3A+sides+%5C%5C++%5C%5C+%28+%5Csqrt%7B3+%5C%3A+%7D++-++%5C%3A++%5Csqrt%7B5%7D+%29++%7B%7D%5E%7B2%7D++%3D++%28%5C%3A++%5Cfrac%7Ba%7D%7Bb%7D+%29+%7B%7D%5E%7B2%7D++%5C%5C++%5C%5C+%28++++3++-++%5C%3A+5+%5C%3A+%29+%5C%3A++%3D++%5C%3A++%5Cfrac%7Ba+%7B%7D%5E%7B2%7D+%7D%7Bb+%7B%7D%5E%7B2%7D+%7D++%5C%5C++%5C%5C++%5C%3A++%5Cfrac%7Ba+%7B+%7D%5E%7B2+%7D++-++%5C%3A+5%7D%7Bb+%7B%7D%5E%7B2%7D+-+3+%7D++)
Hence , a and B are both factors
Hence our assumption was wrong ( √3 - √5 ) is irrational
==================
Let us assume √3 - √5 as rational
Hence , a and B are both factors
Hence our assumption was wrong ( √3 - √5 ) is irrational
Answered by
0
√3 = √3 and √5 = √5
Similar questions