Prove That 3+6√2 is Irrational.
(CLASS 10)
Answers
Answered by
2
Step-by-step explanation:
Let 3 + 6√2 be a rational number (say r)
∴ 3 + 6√2 = r
⇒ 6√2 = r-3
⇒√2 = (r - 3) / 6 --1
According to equation 1,
√2 is a rational number ( ∵ r is a rational number)
This contradicts the fact that √2 is irrational
Therefore, our assumption is wrong
Hence, 3 + 6√2 is an irrational number.
Plz mark me brainliest...
Similar questions