Math, asked by rathidikshu7418, 1 year ago

Prove that √3 cosec 20° - sec 20° = 4

Answers

Answered by MaheswariS
8

Answer:

4

Step-by-step explanation:

Formula used:


1.sin(A-B)= sinA cosB - cosA sinB


2. sin2A = 2 sinA cosA


\sqrt{3}\:cosec20-sec20

=\sqrt{3}\:(\frac{1}{sin20})-(\frac{1}{cos20})

=2[\frac{\sqrt{3}}{2}\:(\frac{1}{sin20})-\frac{1}{2}(\frac{1}{cos20})]

=\frac{2[sin60\:cos20-cos60\:sin20]}{sin20\:cos20}

Multiply\:Nr.\:and\:Dr.by2

=\frac{4[sin(60-20)]}{2sin20\:cos20}

=\frac{4[sin40]}{sin40}

= 4

Similar questions