Math, asked by sachinsalavi2570, 1 year ago

Prove that sin(\frac{\pi}{5}) . sin(\frac{2\pi}{5}) . sin(\frac{3\pi}{5}) . sin(\frac{4\pi}{5}) = \frac{5}{16}.

Answers

Answered by VemugantiRahul
1
Hi there!
Here's the answer:

•°•°•°•°•°<><><<><>><><>°•°•°•°•°•

Let A + B = Π
=> B = Π - A

=> Sin B = Sin (Π -A) = Sin A

{°•° Sin(Π-x) = sin x}


Now,

\frac{Π}{5} + \frac{4Π}{5} = Π

=> Sin(\frac{Π}{5}) = Sin(\frac{4Π}{5})


\frac{2Π}{5} + \frac{3Π}{5} = Π

=> Sin(\frac{2Π}{5}) = Sin(\frac{3Π}{5})


LHS\: =

= sin(\frac{\pi}{5}) . sin(\frac{2\pi}{5}) . sin(\frac{3\pi}{5}) . sin(\frac{4\pi}{5})

= sin(\frac{\pi}{5}) . sin(\frac{2\pi}{5}) . sin(\frac{2\pi}{5}) . sin(\frac{\pi}{5})

= [sin(\frac{\pi}{5})sin(\frac{\pi}{5})]^{2}

= (sin 36° sin 72°)²

= (sin 36° sin 18°)²

= [\frac{\sqrt{10-2\sqrt{5}}}{4} × \frac{\sqrt{10+2\sqrt{5}}}{4}]^{2}

= [\frac{10-2\sqrt{5}}{16} × \frac{10+\sqrt{5}}{16}]

= \frac{100-20}{256}

= \frac{80}{256}

= \frac{5}{16}

=\: RHS


•°•°•°•°•°<><><<><>><><>°•°•°•°•°•
Similar questions