prove that√3 is an irrational number
Answers
Answer:
It is denoted mathematically as √3. It is more precisely called the principal square root of 3, to distinguish it from the negative number with the same property. The square root of 3 is an irrational number.
Step-by-step explanation:
Answer
Let us assume on the contrary that
3
is a rational number.
Then, there exist positive integers a and b such that
3
=
b
a
where, a and b, are co-prime i.e. their HCF is 1
Now,
3
=
b
a
⇒3=
b
2
a
2
⇒3b
2
=a
2
⇒3 divides a
2
[∵3 divides 3b
2
]
⇒3 divides a...(i)
⇒a=3c for some integer c
⇒a
2
=9c
2
⇒3b
2
=9c
2
[∵a
2
=3b
2
]
⇒b
2
=3c
2
⇒3 divides b
2
[∵3 divides 3c
2
]
⇒3 divides b...(ii)
From (i) and (ii), we observe that a and b have at least 3 as a common factor. But, this contradicts the fact that a and b are co-prime. This means that our assumption is not correct.
Hence,
3
is an irrational number.