Prove that √3 is an irrational number and then prove that 7 – 2√3 is an irrational number.
Answers
Answer:
If possible , let
3
be a rational number and its simplest form be
b
a
then, a and b are integers having no common factor
other than 1 and b
=0.
Now,
3
=
b
a
⟹3=
b
2
a
2
(On squaring both sides )
or, 3b
2
=a
2
.......(i)
⟹3 divides a
2
(∵3 divides 3b
2
)
⟹3 divides a
Let a=3c for some integer c
Putting a=3c in (i), we get
or, 3b
2
=9c
2
⟹b
2
=3c
2
⟹3 divides b
2
(∵3 divides 3c
2
)
⟹3 divides a
Thus 3 is a common factor of a and b
This contradicts the fact that a and b have no common factor other than 1.
The contradiction arises by assuming
3
is a rational.
Hence,
3
is irrational.
2
nd
part
If possible, Let (7+2
3
) be a rational number.
⟹7−(7+2
3
) is a rational
∴ −2
3
is a rational.
This contradicts the fact that −2
3
is an irrational number.
Since, the contradiction arises by assuming 7+2
3
is a rational.
Hence, 7+2
3
is irrational.
Proved.
Answer:
Proof that √3 is irrational
Let us assume on the contrary that
√3 is a rational number.
Then, there exist positive integers a and b such that
√3=a/b
where, a and b, are co-prime i.e. their HCF is 1
Now,
on squaring both side,
3=a²/b²
3b²=a²
3 divides a². [∵3 divides 3b²]
3 divides a. ..(eq i)
a=3c for some integer c
a²=9c²
3b²=9c². [a²=3b²]
b²=3c²
3 divides b².
3 divides b. ..(eq ii)
From (i) and (ii), we observe that a and b have at least 3 as a common factor. But, this contradicts the fact that a and b are co-prime. This means that our assumption is not correct.
Hence,
√3 is an irrational number.