prove that 3 tan-1 x + cot-1 x = Π
Answers
Answered by
4
Step-by-step explanation:
We have, 3tan
−1
x+cot
−1
x=π
⇒2tan
−1
x+(tan
−1
x+cot
−1
x)=π
⇒2tan
−1
x+
2
π
=π, [∵tan
−1
x+cot
−1
x=
2
π
] is an identity
⇒2tan
−1
x=π−
2
π
=
2
π
⇒tan
−1
x=
4
π
∴x=tan
4
π
=1
Answered by
0
Answer:
We have, 3tan
−1
x+cot
−1
x=π
⇒2tan
−1
x+(tan
−1
x+cot
−1
x)=π
⇒2tan
−1
x+
2
π
=π, [∵tan
−1
x+cot
−1
x=
2
π
] is an identity
⇒2tan
−1
x=π−
2
π
=
2
π
⇒tan
−1
x=
4
π
∴x=tan
4
π
=1
Similar questions