Math, asked by nivruttikamble13, 10 months ago

Prove that , 3 times the square of any side of an equilateral triangle is equal to 4 times square of an altitude​

Answers

Answered by Anonymous
8

\it\pink{To \ prove:}

\sf{3 \ times \ the \ square \ of \ any \ side \ of \ an}

\sf{equilateral \ triangle \ is \ equal \ to \ 4 \ times \ the}

\sf{square \ of \ an \ altitude. }

\it\green{\underline{\underline{Proof:}}}

\sf{Let \ the \ side \ of \ an \ equilateral \ triangle \ be}

\sf{a \ units.}

\sf{In \ \triangle ADB, \ \angle \ ADB=90°}

\sf{By \ 30^\circ-60^\circ-90^\circ \ triangle \ property}

\sf{Altitude=\dfrac{\sqrt3}{2}\times \ hypotenuse}

\sf{\therefore{Altitude=\dfrac{a\sqrt3}{2}}}

\sf{Now,}

\sf{3 \ times \ Side^{2}=3a^{2}...(1)}

\sf{Also,}

\sf{4 \ times \ Altitude^{2}=4\times(\dfrac{a\sqrt3}{2})^{2}}

\sf{=4\times\dfrac{3a^{2}}{4}}

\sf{=3a^{2}...(2)}

\sf{from \ (1) \ and \ (2),}

\sf\purple{\tt{3 \ times \ the \ square \ of \ any \ side \ of \ an}}

\sf\purple{\tt{equilateral \ triangle \ is \ equal \ to \ 4}}

\sf\purple{\tt{times \ the \ square \ of \ an \ altitude. }}

\sf{Hence \ proved.}

Attachments:
Similar questions