Prove that 32cosh⁶x = cosh6x + 6cosh4x + 15cosh2x +10
Answers
Answered by
1
Answer:
LHS = cos3(2x) = 4cos32x - 3cos2x = 4(2cos2x - 1)3 – 3(2cos2x -1) = 4[8cos6x -1 – 3(2cos2x)(2cos2x - 1)] - 6cos2x + 3 = 32cos6x - 4 - 24cos2x(2cos2x - 1) - 6cos2x + 3 = 32cos6x – 48cos4x +18cos2 x - 1 = RHS.Read more on Sarthaks.com - https://www.sarthaks.com/585165/prove-that-cos6x-32cos-6x-48cos-4x-18cos-2x-1
Similar questions