Math, asked by raikrish464, 19 hours ago

prove that 3V10 is an irrational number.​

Answers

Answered by khushisharma4508
0

Answer:

hope it's helpful marks me at brainlist

Step-by-step explanation:

Let's assume 3+5 is a rational number 3+5=ba

Let's assume 3+5 is a rational number 3+5=ba5=ba−3

Let's assume 3+5 is a rational number 3+5=ba5=ba−35=ba−b3b

Let's assume 3+5 is a rational number 3+5=ba5=ba−35=ba−b3b5=ba−3b

Let's assume 3+5 is a rational number 3+5=ba5=ba−35=ba−b3b5=ba−3bAs we know that 5 is an irrational number. 

Let's assume 3+5 is a rational number 3+5=ba5=ba−35=ba−b3b5=ba−3bAs we know that 5 is an irrational number. so, ba−3b is also an irrational number. 

Let's assume 3+5 is a rational number 3+5=ba5=ba−35=ba−b3b5=ba−3bAs we know that 5 is an irrational number. so, ba−3b is also an irrational number. Therefore, our assumption is wrong.

Let's assume 3+5 is a rational number 3+5=ba5=ba−35=ba−b3b5=ba−3bAs we know that 5 is an irrational number. so, ba−3b is also an irrational number. Therefore, our assumption is wrong.Hence, 3+5 is an irrational number

Similar questions