prove that 4(AMsq +CNsq) =5 ACsq
Attachments:
Answers
Answered by
1
Given:-AN=BN=AB/2
BM=CM=BC/2
To prove :-4{(AM)^2+(CN)^2}=5(AC)^2
Proof:- In triangle NBC,Angle B=90°
(NB)^2+(BC)^2=(NC)^2
(AB^2/4)+(BC)^2=(CN)^2 - 1
In triangle ABM, angle B=90°
(AB)^2+(BM)^2=(AN)^2
(AB)^2+(BC^2/4)=(AN)^2 - 2
Adding 1&2
(CN)^2+(AN)^2=AB^2/4+AB^2+BC^2/4+BC^2
CN^2+AN^2=AB^2+4AB^2+BC^2+4BC^2/4
4(CN^2+AN^2)=5AB^2+5BC^2
4(CN^2+AN^2)=5(AB^2+BC^2)
4(CN^2+AN^2)=5AC^2 (since,AB^2+BC^2=AC^2)
Similar questions
Computer Science,
7 months ago
Social Sciences,
7 months ago
English,
1 year ago
Math,
1 year ago
Math,
1 year ago
Economy,
1 year ago