prove that 4(cos 66 deg + sin 84 deg) = root 3 + root 15
Answers
Answered by
3
Answer:
Step-by-step explanation:
LHS = 4(cos 66 deg + sin 84 deg)
=4(cos 66° + cos 6°)
= 4 × 2 cos((66°+6°)/2) cos((66°-6°)/2) [∵ cosA + cosB = 2 cos((A+B)/2) cos((A-B)/2)]
= 8 cos(36°) cos(30°)
=> If we take cos36° = (√5 +1) / 4, then
= 8 × (√5 +1)/4 × (√3/2)
= (√5 +1) × (√3)
= √3* √5 + √3
= √15 + √3
= √3 + √15 = RHS
Thus, LHS = RHS.
=> So the given equation 4(cos 66 deg + sin 84 deg) = root 3 + root 15, is said to be in equality.
Similar questions
Social Sciences,
8 months ago
Hindi,
8 months ago
Science,
1 year ago
Math,
1 year ago
Science,
1 year ago