Math, asked by Showman5433, 1 year ago

Prove that 4 sin 23×sin 37×sin 83=cos 21

Answers

Answered by Anonymous
10
Sudut Relasi Sin (-a) = - sin a ; sin (180 - a) = sin a. Tan (-a) = - Tan a ; Tan (180 - a) = - Tan a. Sin (-150) = - sin 150 = - sin (180 - 30) = - sin 30 = - 1/2. Tan ...
Answered by pinquancaro
26

Answer and Explanation:

To prove : 4\sin 23\times \sin 37\times \sin 83=\cos 21

Proof :

Taking LHS,

4\sin 23\times \sin 37\times \sin 83

=2\times 2\sin 23\times \sin 37\times \sin 83

Applying formula,

2\sin A\sin B=\cos(A-B)-\cos(A+B)

2\sin 23\times \sin 37=\cos(23-37)-\cos(23+37)

2\sin 23\times \sin 37=\cos(-14)-\cos(60)

2\sin 23\times \sin 37=\cos(14)-\cos(60)

Substitute back,

=2\times(\cos(14)-\cos(60))\times \sin 83

=2\cos(14)\sin 83-2\cos(60)\sin 83

Again applying formula,

2\cos A\sin B=\sin(A+B)-\sin(A-B) and \cos 60=\frac{1}{2}

Substitute above,

=\sin (14+83)-\sin(14-83)-2\times \frac{1}{2}\times \sin 83

=\sin (97)-\sin(-69)- \sin 83

=\sin (90+7)+\sin(90-21)- \sin (90-7)

=\cos 7+\cos 21- \cos 7

=\cos 21

=RHS

Hence proof , LHS=RHS.

Similar questions