prove that 4 sin 27 is equal to 5 + root 5 whole power 1 by 2 minus 3 minus root 5 whole power 1 by 2
Answers
Answer:
proved
Step-by-step explanation:
Given
prove that 4 sin 27 is equal to 5 + root 5 whole power 1 by 2 minus 3 minus root 5 whole power 1 by 2
We can write as
(sin 27 + cos 27)^2 = sin^2 27 + cos^2 27 + 2 sin 27 cos 27
(sin 27 + cos 27)^2 = 1 + sin 2. 27
(sin 27 + cos 27)^2 = 1 + sin 54
(sin 27 + cos 27)^2 = 1 + sin (90 – 36)
(sin 27 + cos 27)^2 = 1 + cos 36
(sin 27 + cos 27)^2 = 1 + √5 + 1/4
(sin 27 + cos 27)^2 = 1/4 (5 + √5)
Sin 27 + cos 27 = 1/2 (√5 + √5) -------------1
Similarly we get
(sin 27 – cos 27)^2 = 1 – cos 36
(sin 27 - cos 27)^2 = 1 - √5 + 1/4
(sin 27 - cos 27)^2 = 1/4 (3 - √5)
sin 27 - cos 27 = + - 1/2 √3 - √5-------------2
sin 27 - cos 27 = -1/2 √3 - √5 --------------3
Adding 1 and 3 we get,
2 sin 27 = 1/2 √5 + √5 – 1/2 √3 - √5
= 1/2 (√5 + √5 – √3 - √5)
4 sin 27 = (√5 + √5)^1/2 – (√3 - √5)^1/2