Prove that : 4 sin (pi/3 - theta) sin (pi/3 + theta) = 3 - 4sin^2 theta
Answers
Answered by
0
Answer:
1/4 cos 3 alpha
Step-by-step explanation:
LHS,
= cos alpha × cos [90° × 2 - (60° - alpha)] × cos [90° × 2 + (60° + alpha)]
= cos alpha × [- cos (60° - alpha)] × [- cos (60° + alpha)]
= cos alpha × cos (60° - alpha) × cos (60° + alpha)
= cos alpha × ( cos^2 alpha - sin^2 60°) [since, cos^2 b - sin^2 a = cos (a - b) × cos (a + b)]
= cos alpha × [cos^2 alpha - ( root 3 / 2)^2]
= cos alpha × [(4 cos^2 alpha - 3) / 4]
= (4 cos^3 alpha - 3 cos alpha) / 4
= 1 / 4 cos 3 alpha
proved
hope it helps
tq.........///
Similar questions
India Languages,
3 months ago
English,
3 months ago
English,
6 months ago
Math,
6 months ago
Science,
11 months ago