Math, asked by kunjansurti0057, 9 months ago

Prove that √5 is an irrational​

Answers

Answered by yogitakambleyk19
2

Given: √5

We need to prove that √5 is irrational

Proof:

Let us assume that √5 is a rational number.

Sp it t can be expressed in the form p/q where p,q are co-prime integers and q≠0

⇒√5=p/q

On squaring both the sides we get,

⇒5=p²/q²

⇒5q²=p² —————–(i)

p²/5= q²

So 5 divides p

p is a multiple of 5

⇒p=5m

⇒p²=25m² ————-(ii)

From equations (i) and (ii), we get,

5q²=25m²

⇒q²=5m²

⇒q² is a multiple of 5

⇒q is a multiple of 5

Hence, p,q have a common factor 5. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number

√5 is an irrational number

hope it will be useful

please follow me and mark mi as brainleast

Answered by Anonymous
6

Step-by-step explanation:

Plz refer to the attachment....

Plz mark my answer as brainliest

Plz thank my answers...

Do follow me....

Give thnx = Take thnx

There are 4 attachments....

Attachments:
Similar questions
Math, 4 months ago