Math, asked by allenjoseph810, 1 year ago

Prove that (a^3)(b^3)=(a^3)+(b^3)+3ab(a+b)

Answers

Answered by Abhilash210
0

Step-by-step explanation:

I think it isn't a³b³. It will (a+b)³=a³+b³+3ab(a+b).

For this, take the L.H.S.

now,L.H.S.=(a+b)³

=(a+b)²(a+b)

=(a²+b²+2ab)(a+b)

=a(a²+b²+2ab)+b(a²+b²+2ab)

=a³+ab²+2a²b+a²b+b³+2ab²

=a³+b³+3a²b+3ab²

=a³+b³+3ab(a+b)

...... proved

Answered by Anonymous
4

\Large{\underline{\underline{\mathfrak{To \: Prove:-}}}}

\rm{(a+b)^3 = a^3 + b^3 + 3ab(a+b) }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\Large{\underline{\underline{\mathfrak{Solution:-}}}}

\rm{we \: have,}

\rm{(a+b)^3=(a+b)(a+b)(a+b)}

{\bold{\underline{\underline{[By\: the \: law \: of \: exponents]}}}}

\rm{(a+b)^3=(a+b)(a+b)^2}

\rm{(a+b)^3=(a+b)(a^2+2ab+b^2}

\rm{(a+b)^3=a×(a^2+2ab+b^2)+b×(a^2+2ab+b^2}

{\bold{\underline{\underline{[By\: distributive\: law]}}}}

\rm{(a+b)^3=a×a^2+a×2ab +a×b^2+b×a^2+b×2ab+b×b^2}

{\bold{\underline{\underline{[By\: distributive\: law]}}}}

\rm{(a+b)^3=a^3+2a^2b+ab^2+a^2b+2ab^2+b^3}

\rm{(a+b)^3=a^3+3a^2b+3ab^2+b^3}

{\bold{\underline{\underline{[Rearranging\: the \:terms]}}}}

\rm{(a+b)^3=a^3+b^3+3a^2b+3ab^2}

\rm{(a+b)^3=a^3+b^3+3ab(a+b)}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\Large{\underline{\underline{\mathfrak{Hence \: Proved!}}}}

Similar questions