Math, asked by chnchnchanu, 16 days ago

prove that (a+b)^2=a^2+2ab+b^2​

Answers

Answered by dsk75
1

Answer:

Step-by-step explanation:

L.H.S = (a+b)²;  R.H.S = a²+2ab +b²

L.H.S = (a+b)²

         = (a+b)(a+b)

         = a(a+b) + b(a+b)

         = a²+ab + ab+b²

         = a² + 2ab + b² = R.H.S

hence proved

Answered by redx18
0

(a+b)^{2} =a^{2} +2ab+b^{2} \\ LHS \\(a+b)^{2} = (a+b)(a+b) =(a+b)a +(a+b)b\\=a^{2} +ab+ab + b^{2} \\=a^{2} +2ab+b^{2}\\Hence:/proved

Similar questions