prove that:(a+b)3+(b+c)3+(c+a)3-3(a+b) (b+c) (c+a)=2(a3+b3+c3-3abc)
Answers
Answered by
2
Step-by-step explanation:
LHS;
(a+b)3+(b+c)3+(c+a)3-3(a+b)(b+c)(c+a)
=3a+3b+3b+3c+3c+3a-3a-3b-3b-3c-3c-3a
=1 (cancellation)
RHS:
2(a3+b3+c3-3abc)
=a6+b6+c6-6abc
=1 (by cancellation)
;LHS=RHS
Similar questions