prove that: (a+b)3+(b+c)3+(c+a)3-3(a+b)(b+c)(c+a)=2(a3+b3+c3-3abc)
Answers
Answered by
12
YOUR ANSWER IS IN THE ABOVE ATTACHMENT..⬇⬆
___________________________________
___________________________________
✝✝…HOPE…IT…HELPS…YOU…✝✝
___________________________________
___________________________________
✝✝…HOPE…IT…HELPS…YOU…✝✝
Attachments:
Answered by
4
(a+b)*3+(b+c)*3+(c+a)*3-3*(a+b)*(b+c)*(c+a)-(2*(a^3+b^3+c^3-3*a*b*c))=0
Step by step solution :
Step 1 :
Checking for a perfect cube :
1.1 a3-3abc+b3+c3 is not a perfect cube
Equation at the end of step 1 :
(((((a+b)•3)+((b+c)•3))+((a+c)•3))-(((3•(a+b))•(b+c))•(a+c)))-2•(a3-3abc+b3+c3) = 0
Step 2 :
Equation at the end of step 2 :
(((((a+b)•3)+((b+c)•3))+((a+c)•3))-((3•(a+b)•(b+c))•(a+c)))-2•(a3-3abc+b3+c3) = 0
Step 3 :
Equation at the end of step 3 :
(((((a+b)•3)+((b+c)•3))+((a+c)•3))-(3•(a+b)•(b+c)•(a+c)))-2•(a3-3abc+b3+c3) = 0
Step 4 :
Equation at the end of step 4 :
(((((a+b)•3)+((b+c)•3))+((a+c)•3))-3•(a+b)•(b+c)•(a+c))-2•(a3-3abc+b3+c3) = 0
Step 5 :
Equation at the end of step 5 :
(((((a+b)•3)+((b+c)•3))+3•(a+c))-3•(a+b)•(b+c)•(a+c))-2•(a3-3abc+b3+c3) = 0
Step 6 :
Equation at the end of step 6 :
(((((a+b)•3)+3•(b+c))+3•(a+c))-3•(a+b)•(b+c)•(a+c))-2•(a3-3abc+b3+c3) = 0
Step 7 :
Equation at the end of step 7 :
(((3•(a+b)+3•(b+c))+3•(a+c))-3•(a+b)•(b+c)•(a+c))-2•(a3-3abc+b3+c3) = 0
Step 8 :
Step 9 :
Pulling out like terms :
9.1 Pull out like factors :
-2a3 - 3a2b - 3a2c - 3ab2 - 3ac2 + 6a - 2b3 - 3b2c - 3bc2 + 6b - 2c3 + 6c =
-1 • (2a3 + 3a2b + 3a2c + 3ab2 + 3ac2 - 6a + 2b3+ 3b2c + 3bc2 - 6b + 2c3 - 6c)
Equation at the end of step 9 :
-2a3 - 3a2b - 3a2c - 3ab2 - 3ac2 + 6a - 2b3 - 3b2c - 3bc2 + 6b - 2c3 + 6c = 0
Step 10 :
Solving a Single Variable Equation :
10.1 Solve -2a3-3a2b-3a2c-3ab2-3ac2+6a-2b3-3b2c-3bc2+6b-2c3+6c = 0
Step by step solution :
Step 1 :
Checking for a perfect cube :
1.1 a3-3abc+b3+c3 is not a perfect cube
Equation at the end of step 1 :
(((((a+b)•3)+((b+c)•3))+((a+c)•3))-(((3•(a+b))•(b+c))•(a+c)))-2•(a3-3abc+b3+c3) = 0
Step 2 :
Equation at the end of step 2 :
(((((a+b)•3)+((b+c)•3))+((a+c)•3))-((3•(a+b)•(b+c))•(a+c)))-2•(a3-3abc+b3+c3) = 0
Step 3 :
Equation at the end of step 3 :
(((((a+b)•3)+((b+c)•3))+((a+c)•3))-(3•(a+b)•(b+c)•(a+c)))-2•(a3-3abc+b3+c3) = 0
Step 4 :
Equation at the end of step 4 :
(((((a+b)•3)+((b+c)•3))+((a+c)•3))-3•(a+b)•(b+c)•(a+c))-2•(a3-3abc+b3+c3) = 0
Step 5 :
Equation at the end of step 5 :
(((((a+b)•3)+((b+c)•3))+3•(a+c))-3•(a+b)•(b+c)•(a+c))-2•(a3-3abc+b3+c3) = 0
Step 6 :
Equation at the end of step 6 :
(((((a+b)•3)+3•(b+c))+3•(a+c))-3•(a+b)•(b+c)•(a+c))-2•(a3-3abc+b3+c3) = 0
Step 7 :
Equation at the end of step 7 :
(((3•(a+b)+3•(b+c))+3•(a+c))-3•(a+b)•(b+c)•(a+c))-2•(a3-3abc+b3+c3) = 0
Step 8 :
Step 9 :
Pulling out like terms :
9.1 Pull out like factors :
-2a3 - 3a2b - 3a2c - 3ab2 - 3ac2 + 6a - 2b3 - 3b2c - 3bc2 + 6b - 2c3 + 6c =
-1 • (2a3 + 3a2b + 3a2c + 3ab2 + 3ac2 - 6a + 2b3+ 3b2c + 3bc2 - 6b + 2c3 - 6c)
Equation at the end of step 9 :
-2a3 - 3a2b - 3a2c - 3ab2 - 3ac2 + 6a - 2b3 - 3b2c - 3bc2 + 6b - 2c3 + 6c = 0
Step 10 :
Solving a Single Variable Equation :
10.1 Solve -2a3-3a2b-3a2c-3ab2-3ac2+6a-2b3-3b2c-3bc2+6b-2c3+6c = 0
Similar questions