Math, asked by harshnihaal, 4 months ago

Prove that ( a+ b + c )3 – a

3 –b

3 –c

3 = 3( a+b ) (b + c ) ( c + a )​


tanaithrinesh1999: LHS
(a+b+c)^3-a^3-b^3-c^3 ={(a+b)+c}^3- a^3-b^3-c^3 =(a+b)^3+c^3+3c(a+b)(a+b+c)-a^3-b^3-c^3 =a^3+b^3+c^3+3ab(a+b)+3c(a+b)(a+b+c)-a^3-b^3-c^3=3ab(a+b)+3c(a+b)(a+b+c)=3(a+b){ab+c(a+b+c)}=3(a+b){ab+ac+bc+c^3}=3(a+b){a(b+c)+c(b+c)} =3(a+b)(b+c)(c+a)
Hence proved
harshnihaal: tq
Deven1234321: aaaaaaa
Deven1234321: Wawo

Answers

Answered by Deven1234321
0

Answer:

p

Step-by-step explanation:

bee en na DC be no the si VA nh he

Similar questions