Prove that a
COSA
+
1t5inA
1 tsina
1
2 Seca
COSA
Answers
Step-by-step explanation:
Let us start from the LHS
Let us start from the LHS1-sinA/1+sinA
Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get
Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)
Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)=(1-SinA)²/ 1² -(Sin²A)
Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)=(1-SinA)²/ 1² -(Sin²A)=(1-SinA)²/ 1 -(Sin²A)
Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)=(1-SinA)²/ 1² -(Sin²A)=(1-SinA)²/ 1 -(Sin²A)=(1-SinA)² /Cos² A
Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)=(1-SinA)²/ 1² -(Sin²A)=(1-SinA)²/ 1 -(Sin²A)=(1-SinA)² /Cos² A=[ 1 -Sin²A = cos²A]
Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)=(1-SinA)²/ 1² -(Sin²A)=(1-SinA)²/ 1 -(Sin²A)=(1-SinA)² /Cos² A=[ 1 -Sin²A = cos²A]=(1-SinA/CosA)²
Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)=(1-SinA)²/ 1² -(Sin²A)=(1-SinA)²/ 1 -(Sin²A)=(1-SinA)² /Cos² A=[ 1 -Sin²A = cos²A]=(1-SinA/CosA)²=(1/CosA-SinA/CosA)²
Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)=(1-SinA)²/ 1² -(Sin²A)=(1-SinA)²/ 1 -(Sin²A)=(1-SinA)² /Cos² A=[ 1 -Sin²A = cos²A]=(1-SinA/CosA)²=(1/CosA-SinA/CosA)²=(SecA-tanA)²
Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)=(1-SinA)²/ 1² -(Sin²A)=(1-SinA)²/ 1 -(Sin²A)=(1-SinA)² /Cos² A=[ 1 -Sin²A = cos²A]=(1-SinA/CosA)²=(1/CosA-SinA/CosA)²=(SecA-tanA)²= RHS
Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)=(1-SinA)²/ 1² -(Sin²A)=(1-SinA)²/ 1 -(Sin²A)=(1-SinA)² /Cos² A=[ 1 -Sin²A = cos²A]=(1-SinA/CosA)²=(1/CosA-SinA/CosA)²=(SecA-tanA)²= RHSHence proved
Answer:
Hello Vedika where do you live