prove that a cyclic parallelogram is a rectangle
Answers
Answered by
1
Answer:
here is ur answer...
Step-by-step explanation:
Hope it'll help you frnds... Mark me as brainliest... If u can follow me and I'll also follow u back
Attachments:
Answered by
0
Answer:
Given,
ABCD is a cyclic parallelogram.
To prove,
ABCD is a rectangle.
Proof:
∠1+∠2=180° ...Opposite angles of a cyclic parallelogram
Also, Opposite angles of a cyclic parallelogram are equal.
Thus,
∠1=∠2
⇒∠1+∠1=180°
⇒∠1=90°
One of the interior angle of the parallelogram is right angled. Thus,
ABCD is a rectangle.
Step-by-step explanation:
Given,
ABCD is a cyclic parallelogram.
To prove,
ABCD is a rectangle.
Proof:
∠1+∠2=180° ...Opposite angles of a cyclic parallelogram
Also, Opposite angles of a cyclic parallelogram are equal.
Thus,
∠1=∠2
⇒∠1+∠1=180°
⇒∠1=90°
One of the interior angle of the parallelogram is right angled. Thus,
ABCD is a rectangle.
Similar questions