prove that a gun will shoot three times as high when it's angle of elevation is 60°as when it is 30°,but cover the same horizontal range?
Answers
Answered by
1
Answer:
“G'day mate,
Explanation:
The horizontal distance is
R=\frac{v^2}{g}\sin(2\alpha)R=
g
v
2
sin(2α)
R_1=\frac{v^2}{g}\sin60=\frac{\sqrt{3}v^2}{2g}R
1
=
g
v
2
sin60=
2g
3
v
2
R_2=\frac{v^2}{g}\sin120=\frac{\sqrt{3}v^2}{2g}R
2
=
g
v
2
sin120=
2g
3
v
2
Thus,
R_1=R_2R
1
=R
2
h_1=\frac{v^2}{2g}\sin^230=\frac{v^2}{8g}h
1
=
2g
v
2
sin
2
30=
8g
v
2
h_2=\frac{v^2}{2g}\sin^260=\frac{3v^2}{8g}=3h_1h
2
=
2g
v
2
sin
2
60=
8g
3v
2
=3h
1
Similar questions