Math, asked by daniyaltoqeer79, 1 year ago

prove that (a sin theta + b cos theta )square + (a cos theta - b sin theta )square = a square + b square
Who will answer me correctly I will make it brainliest

Answers

Answered by vaibhav006
1

Answer:

asinθ + bcosθ = c

taking square both sides,

(asinθ + bcosθ)² = c²

⇒a²sin²θ + b²cos²θ + 2absinθ.cosθ = c² --------(1)

Let acosθ - bsinθ = x

Squaring both sides

(acosθ - bsinθ)² = x²

⇒a²cos²θ + b²sin²θ -2absinθ.cosθ = x² ------(2)

Add equation (1) and (2),

a²sin²θ + b²cos²θ +2abinθ.cosθ + a²cos²θ + b²sin²θ -2absinθ.cosθ = c² + x²

⇒(a² + b²)cos²θ + (a² +b²)sin²θ = c² + x²

⇒(a² + b²)[sin²θ + cos²θ ] = c² + x²

⇒(a² + b²) = c² + x² [∵ sin²x + cos²x = 1 ]

⇒(a² + b² - c²) = x²

Take square root both sides,

+/-root a2+b2-c2=x

Hence, acosθ - bsinθ =

Root a^2 + b^2 - c^2.

Hope u will found it helpful....

Step-by-step explanation:

Answered by aman3813
0

Answer:

Look in pic for answer..

Please Mark As Brainliest...

Attachments:
Similar questions