Math, asked by keshav5372, 1 year ago

prove that a square + b square + c square minus A B minus b c minus C is always non negative for all values of a b and c

Answers

Answered by ebeneliabdesikan
48

Answer:

HEYA!!

A2 + b2 + c2 − ab − bc − ca

 

Multiplying and dividing the expression by 2,

 

= 2(a2 + b2 + c2 − ab − bc – ca) / 2

 

= (2a2 + 2b2 + 2c2 − 2ab − 2bc − 2ca) / 2

 

= (a2 − 2ab + b2 + b2 − 2bc + c2 + c2− 2ca + a2) / 2

 

= [(a − b)2 + (b − c)2 + (c −  a)2] / 2

 

Square of a number is always greater than or equal to zero.

 

Hence sum of the squares is also greater than or equal to zero

 

∴ [(a − b)2 + (b − c)2 + (c − a)2] ≥ 0  and {(a − b)2 + (b − c)2 + (c − a)2}/2= 0 when a = b = c.

 

Hence, a2 + b2 + c2 – ab – ac - bc is always non-negative for all its values of a, b and c.

HOPE IT WORKS!!!

Step-by-step explanation:

Answered by pankaj6778
0

Step-by-step explanation:

3अंडर रूट 54 / 250 इक्वल गिव आंसर

Similar questions