Prove that:
a3+b3+c3-3abc =(a+b+c)(a2+b2+c2-ab-bc-ac) by taking LHS
Answers
Answered by
114
I hope it is helpful for you,
Please mark as a Brainliest answer.
Please mark as a Brainliest answer.
Attachments:
Answered by
58
Answer:
a³+b³+c³-3abc
a³+b³+c³-3abc= (a+b+c)(a²+b²+c²-ab-bc-ca)
Step-by-step explanation:
LHS = a³+b³+c³-3abc
= (a³+b³)+c³-3abc
= (a+b)³-3ab(a+b)+c³-3abc
/* By algebraic identity:
x³+y³+3xy(x+y)=(x+y)³
=> x³+y³ = (x+y)³-3xy(x+y) */
= [(a+b)³+c³]-3ab(a+b)-3abc
=[(a+b+c)³-3(a+b)c(a+b+c)]-3ab(a+b+c)
=(a+b+c)[(a+b+c)²-3(a+b)c-3ab]
=(a+b+c)[a²+b²+c²+2ab+2bc+2ca-3ac-3bc-3ab]
=(a+b+c)(a²+b²+c²-ab-bc-ca)
= RHS
Therefore,
a³+b³+c³-3abc
= (a+b+c)(a²+b²+c²-ab-bc-ca)
•••♪
Similar questions