Math, asked by sivani77, 3 months ago

prove that:(as attached)

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \frac{1 +  \tan^{3} ( \theta) }{1 +  \tan( \theta) }  +  \tan( \theta)  -  \sec^{2} ( \theta)  \\

  = \frac{(1 +  \tan( \theta) )(1 +  \tan^{2} ( \theta) -  \tan( \theta)  }{1 +  \tan( \theta) }  +  \tan( \theta)  -  \sec^{2} ( \theta)  \\

  = 1 +  \tan^{2} ( \theta) -  \tan( \theta)   +  \tan( \theta)  -  \sec^{2} ( \theta)  \\

  =   \sec^{2} ( \theta)-  \sec^{2} ( \theta)  \\

 = 0

Similar questions