prove that b^2-c^2/a^2 sin2A+c^2-a^2/b^2 sin2b+b^2-b^2/b^2 sin2c=0
Answers
Answer:
We know that in a triangle a=k\sin A,b=k\sin B,c=k\sin Ca=ksinA,b=ksinB,c=ksinC .
So
\frac{\sin 2A}{a^2} =\frac{2}{a^2} \sin A \cos A=\frac{2a}{ka^2} \frac{b^2+c^2-a^2}{2bc} =\frac{b^2+c^2-a^2}{2kabc}
a
2
sin2A
=
a
2
2
sinAcosA=
ka
2
2a
2bc
b
2
+c
2
−a
2
=
2kabc
b
2
+c
2
−a
2
.
Similarly,
$$\begin{lgathered}\frac{\sin 2B}{b^2} =\frac{c^2+a^2-b^2}{2kabc} \\ \frac{\sin 2C}{c^2} =\frac{a^2+b^2-c^2}{2kabc}\end{lgathered}$$ .
Thus,
$$\begin{lgathered}LHS=(b^2 -c^2)\frac{\sin 2A}{a^2} +(c^2 -b^2)\frac{\sin 2B}{b^2}+(a^2 -c^2)\frac{\sin 2C}{c^2}\\\end{lgathered}$$
$$\begin{lgathered}LHS=(b^2 -c^2)\frac{b^2+c^2-a^2}{2kabc} +(c^2 -b^2)\frac{c^2+a^2-b^2}{2kabc}+(a^2 -b^2)\frac{a^2+b^2-c^2}{2kabc}\\ LHS=\frac{b^4-c^4-a^2(b^2 -c^2)}{2kabc} +\frac{c^4-a^4-b^2(c^2 -b^2)}{2kabc}+\frac{a^4-b^4-c^2(a^2 -b^2)}{2kabc}\\ LHS=\frac{b^4-c^4-a^2(b^2 -c^2)+c^4-a^4-b^2(c^2 -b^2)+a^4-b^4-c^2(a^2 -b^2)}{2kabc} \\ LHS=\frac{0}{2kabc} =0=RHS\end{lgathered}$$ .
The proof is complete.