Prove that b square x square minus A square y square equals to a square b square if X equals to AC theta y equals to B tan theta
Answers
Answered by
27
Answered by
8
Answer:
⟹ax=secθandby=tanθ
\textsf{Using}Using
\boxed{\mathsf{sec^2\theta-tan^2\theta=1}}sec2θ−tan2θ=1
\implies\mathsf{\frac{x^2}{a^2}-\frac{y^2}{b^2}=1}⟹a2x2−b2y2=1
\implies\mathsf{\frac{b^2x^2-a^2y^2}{a^2b^2}=1}⟹a2b2b2x2−a2y2=1
\implies\mathsf{b^2x^2-a^2y^2=a^2b^2}⟹b2x2−a2y2=a2b2
Similar questions
Social Sciences,
7 months ago
Math,
7 months ago
Math,
7 months ago
Sociology,
1 year ago
Chemistry,
1 year ago