Math, asked by steffisaikia23, 1 month ago

Prove that -
Correct answer will get marked as Brainliest
Please don't spam​

Attachments:

Answers

Answered by MysticSohamS
1

Answer:

hey here is your proof

pls mark it as brainliest

Step-by-step explanation:

to \: prove =  \\  \\ 2.sec {}^{2}  \: θ - sec {}^{4}  \:  θ- 2.cosec {}^{2} θ + cosec {}^{4}  \: θ \\ \\   =  \frac{1}{tan \:  {}^{4}  \:θ }  - tan {}^{4}  \: θ \\  \\

LHS = 2sec {}^{2}  \: θ - sec {}^{2} θ - 2.cosec {}^{2} θ + cosec {}^{4}  \: θ \\  \\ we \: know \: that \\ 1 + tan {}^{2}  \: θ = sec {}^{2}  \: θ \\  \\ 1 + cot {}^{2}  \: θ = cosec {}^{2}  \: θ \\  \\

 = 2.(1 + tan {}^{2}  \: θ) - (1 + tan {}^{2} θ) { }^{2}  - 2.(1 + cot {}^{2} θ) + (1  + cot {}^{2} θ) {}^{2}  \\  \\  = 2 + 2tan {}^{2} θ - (1 + tan {}^{4}  θ + 2.tan {}^{2} θ) - 2 - 2.cot {}^{2} θ  +  (1 + cot {}^{4} θ + 2.cot {}^{2} θ) \\  \\  =2.tan {}^{2} θ - 1 - tan {}^{4} θ - 2.tan {}^{2} θ   - 2cot {}^{2} θ  + 1 + cot {}^{4} θ + 2.cot {}^{2} θ \\  \\  =  - tan {}^{4} θ  + cot {}^{4} θ \\  \\  =  \frac{1}{tan {}^{4} θ}  - tan {}^{4} θ \\  \\  = RHS \\  \\ thus \: proved

Similar questions