Math, asked by niveditatuli2521, 11 months ago

Prove that: cos/1+ sin+ 1+sin/cos=2sec

Answers

Answered by Rythm14
8

Q - cos/(1+sin) + (1+sin)/cos

---------------------------------------

= cos^2 + (1+sin)^2 / cos (1+sin)

= cos^2 + 1 + 2sin + sin2 / cos (1+sin)

We know that cos^2 + sin^2 = 1

= (1+1+ 2sin) / cos(1+sin)

= (2 + 2sin) /cos (1+sin)

= 2(1+sin) / cos (1+sin)

= 2 / cos

= 2sec Proved

Answered by BrainlyConqueror0901
102

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \orange{ to \: prove :}} \\ { \pink{ \boxed{ \red{ \frac{ \cos(a) }{1 +  \sin(a) } +  \frac{1 +  \sin(a) }{ \cos(a) }  = 2 \sec(a)  }}}}

USING TRIGO IDENTITY TO PROOF:

\to\frac{cos(a) }{1 +  \sin(a) } +  \frac{1 +  \sin(a) }{ \cos(a) }  = 2 \sec(a)   \\  \:  \:  \:  \:  \:  \:  \: LHS \\ \to \frac{cos(a) }{1 +  \sin(a) } +  \frac{1 +  \sin(a) }{ \cos(a) }   \\  \to \frac{ \cos ^{2}(a )  + (1 +  { \sin(a) })^{2}}{(1 +  \sin(a)) \cos(a)  } \\  \to \frac{ \cos ^{2} (a) + 1 +  { \sin^{2} (a) } + 2  \sin(a)   }{(1 +  \sin(a) ) \cos(a) }  \\  \to  \frac{1 + 1 + 2 \sin(a) }{(1 +  \sin(a)) \cos(a)  }  \\ \to  \frac{2 + 2 \sin(a) }{(1 +  \sin(a)) \cos(a)  }  \\ \to   \frac{2(1 +  \sin(a)) }{(1 +  \sin(a) ) \cos(a) }  \\  \to \frac{2}{ \cos(a) }  \\ \to  \frac{2}{ \frac{1}{ \sec(a) } }  \\ \to 2 \sec(a) \\ LHS=RHS

\huge{\pink{\boxed{\green{\underline{\sf{VERIFIED}}}}}}

_________________________________________

Similar questions