Math, asked by hykersalman, 3 months ago

prove that cos θ /1-tanθ +sinθ/1-cotθ =cosθ+sinθ​

Answers

Answered by mathdude500
6

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\boxed{ \red{\bf{tanx = \dfrac{sinx}{cosx}}}}

\boxed{ \red{\bf{cotx = \dfrac{cosx}{sinx}}}}

\boxed{ \red{\bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}}}

\huge\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:\dfrac{cos\theta}{1 - tan\theta}  + \dfrac{sin\theta}{1 - cot\theta}

 \rm \:  \:  =  \:  \: \dfrac{cos\theta}{ \:  \:  \: 1 - \dfrac{sin\theta}{cos\theta}  \:  \:  \:  \: }  + \dfrac{sin\theta}{ \:  \:  \: 1 - \dfrac{cos\theta}{sin\theta} \:  \:  \: }

 \rm \:  \:  =  \:  \: \dfrac{cos\theta}{ \:  \:  \: \dfrac{cos\theta - sin\theta}{cos\theta}  \:  \:  \:  \: }  + \dfrac{sin\theta}{ \:  \:  \:  \dfrac{sin\theta - cos\theta}{sin\theta} \:  \:  \: }

 \rm \:  \:  =  \:  \: \dfrac{ {cos}^{2}\theta }{cos\theta - sin\theta}  + \dfrac{ {sin}^{2}\theta }{sin\theta - cos\theta}

 \rm \:  \:  =  \:  \: \dfrac{ {cos}^{2}\theta }{cos\theta - sin\theta}   -  \dfrac{ {sin}^{2}\theta }{cos\theta -  sin\theta}

 \rm \:  \:  =  \:  \: \dfrac{ {cos}^{2}\theta  -  {sin}^{2}\theta }{cos\theta - sin\theta}

 \rm \:  \:  =  \:  \: \dfrac{(cos\theta + sin\theta) \:  \cancel{(cos\theta - sin\theta)}}{ \cancel{(cos\theta - sin\theta)}}

 \rm \:  \:  =  \:  \: cos\theta + sin\theta

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions