Math, asked by shayan2002, 1 year ago

PROVE THAT:
cos 12 cos 24 cos 36 cos 48 Cos 60 cos 72 cos 84 equal = 1 / 128​

Answers

Answered by MaheswariS
20

Answer:

\boxed{\bf\;cos\,12^{\circ}\:cos\,24^{\circ}\:cos\,36^{\circ}\:cos\,48^{\circ}\:cos\,60^{\circ}\:cos\,72^{\circ}\:cos\,84^{\circ}=\frac{1}{128}}

Step-by-step explanation:

Given:

cos\,12^{\circ}\:cos\,24^{\circ}\:cos\,36^{\circ}\:cos\,48^{\circ}\:cos\,60^{\circ}\:cos\,72^{\circ}\:cos\,84^{\circ}

Using

\boxed{cos\,60^{\circ}=\frac{1}{2}}

=\frac{1}{2}[cos\,12^{\circ}\:cos\,24^{\circ}\:cos\,36^{\circ}\:cos\,48^{\circ}\:cos\,72^{\circ}\:cos\,84^{\circ}]

=\frac{1}{2}[cos\,48^{\circ}\:cos\,12^{\circ}\:cos\,72^{\circ}]\:[cos\,36^{\circ}\:cos\,24^{\circ}\:cos\,84^{\circ}]

=\frac{1}{2}[cos(60^{\circ}-12^{\circ})\:cos\,12^{\circ}\:cos(60^{\circ}+12^{\circ})][cos(60^{\circ}-24^{\circ})\:cos\,24^{\circ}\:cos(60^{\circ}+24^{\circ})]\:

Using

\boxed{\bf\;cos(60^{\circ}-A)\:cosA\:cos(60^{\circ}-A)=\frac{1}{4}\:cos3A}

=\frac{1}{2}[\frac{1}{4}cos3(12^{\circ})]\:[\frac{1}{4}cos3(24^{\circ})]

=\frac{1}{2}[\frac{1}{4}cos36^{\circ}]\:[\frac{1}{4}cos72^{\circ}]

=\frac{1}{32}[cos36^{\circ}\:sin18^{\circ}]

Using

\boxed{sin18^{\circ}=\frac{{\sqrt5}-1}{4}\:and\:cos36^{\circ}=\frac{{\sqrt5}+1}{4}}

=\frac{1}{32}[\frac{{\sqrt5}+1}{4}\:\frac{{\sqrt5}-1}{4}]

=\frac{1}{32}[\frac{(\sqrt5)^2-1^2}{16}]

=\frac{1}{32}[\frac{5-1}{16}]

=\frac{1}{32}[\frac{4}{16}]

=\frac{1}{32}[\frac{1}{4}]

=\frac{1}{128}

\implies\boxed{\bf\;cos\,12^{\circ}\:cos\,24^{\circ}\:cos\,36^{\circ}\:cos\,48^{\circ}\:cos\,60^{\circ}\:cos\,72^{\circ}\:cos\,84^{\circ}=\frac{1}{128}}

Similar questions