prove that (cos 15 degree+sin 15 degree)/(cos 15 degree-sin15degree)=root3
Answers
Answered by
6
LHS=(cos15+sin15)/(cos15-sin15)
=(cos (90-75)+cos15)/(cos (90-75)-sin15)
=(sin75+sin15)/(sin75-sin15)
=2sin45.cos30/2cos45.sin30
=cos30/sin30=cot30=root3= RHS
=(cos (90-75)+cos15)/(cos (90-75)-sin15)
=(sin75+sin15)/(sin75-sin15)
=2sin45.cos30/2cos45.sin30
=cos30/sin30=cot30=root3= RHS
Answered by
2
rationalize
=
(cos15+sin15)(cos15+sin15)÷[(cos15-=sin15)(cos15+sin15)],,,
=[cos²15+sin²15+2sin15cos15]÷[cos²15-sin²15]
=[1+sin30]÷[cos30]
=[1+1/2]÷(√3/2)
=3/2÷√3/2
=3/√3
=(√3√3)/√3=√3
=
(cos15+sin15)(cos15+sin15)÷[(cos15-=sin15)(cos15+sin15)],,,
=[cos²15+sin²15+2sin15cos15]÷[cos²15-sin²15]
=[1+sin30]÷[cos30]
=[1+1/2]÷(√3/2)
=3/2÷√3/2
=3/√3
=(√3√3)/√3=√3
Similar questions