. Prove that
cos^2 2x - cos^2 6x = sin 4x sin 8x
Answers
Step-by-step explanation:
hope this helps you
mark me as the brainliest
Answer:
cos² x - cos² 6 x = sin 4 x. sin 8 x [ Proved ]
Step-by-step explanation:
Given :
cos² x - cos² 6 x = sin 4 x. sin 8 x
L.H.S. = cos² x - cos² 6 x
Using identity a² - b² = ( a + b ) ( a - b )
= > ( cos 2 x + cos 6 x ) ( cos 2 x - cos 6 x )
Using sum and difference to product formula :
cos C + cos D = 2 cos ( ( C + D ) / 2 ) . cos ( ( ( C - D ) / 2 )
cos C - cos D = - 2 sin ( ( C + D ) / 2 ) . sin ( ( ( C - D ) / 2 )
= > [ 2 cos ( 2 x + 6 x ) / 2. cos ( 2 x - 6 x ) / 2 ] [ - sin ( 2 x + 6 x ) / 2 . sin ( 2 x - 6 x ) / 2 ]
= > 2 cos 4 x . cos ( -2 x ) ( - 2 sin 4 x sin ( - 2 x ) )
We know :
cos ( - Ф ) = cos Ф and sin ( Ф ) = - sin Ф
= > 2 cos 4 x . cos ( 2 x ) ( 2 sin 4 x sin ( 2 x ) )
Using multiple angle formula :
i.e. 2 sin x cos x = sin 2 x
= > ( 2 cos 4 x .cos 4 x ) ( 2 sin 2 x . cos 2 x )
= > sin 8 x . sin 4 x
= R.H.S.
Since L.H.S. = R.H.S.