Prove that cos^2 a+cos^2 (a+2 pie/3) + cos^2 (a-2pie/3) =3
Answers
Answered by
1
LHS =======================
Cos^2a + Cos^2(a +2pie/3) + Cos^2(a-2pie/3)
= (1+cos a) 1/2 + (1+cos(a+2pie/3)) 1/2 + (1+cos(a-2 pie/3)) 1/2
= 1/2 ( 1+cos a + 1 +Cos(a+2 pie/3) + 1 + Cos(a -2 pie/3) )
= 1/2 ( 3 + cos a + Cos( a + 120 ) + Cos( a - 120)
. = 1/2 ( 3 + Cos a + 2 cos a cos120)
= 1/2 ( 3 + cos a + 2 cos a . -1/2)
(since cos 120 = -1/2)
= 1/2× ( 3 + cosa - cosa)
=> 3/2
= = RHS
Cos^2a + Cos^2(a +2pie/3) + Cos^2(a-2pie/3)
= (1+cos a) 1/2 + (1+cos(a+2pie/3)) 1/2 + (1+cos(a-2 pie/3)) 1/2
= 1/2 ( 1+cos a + 1 +Cos(a+2 pie/3) + 1 + Cos(a -2 pie/3) )
= 1/2 ( 3 + cos a + Cos( a + 120 ) + Cos( a - 120)
. = 1/2 ( 3 + Cos a + 2 cos a cos120)
= 1/2 ( 3 + cos a + 2 cos a . -1/2)
(since cos 120 = -1/2)
= 1/2× ( 3 + cosa - cosa)
=> 3/2
= = RHS
Similar questions
English,
8 months ago
Math,
8 months ago
Social Sciences,
1 year ago
Biology,
1 year ago
Math,
1 year ago