prove that cos 2x = (1 - tan²x) / (1 + tan²x)
Answers
Answered by
26
hey rushi I hope my ans is correct
plz reply me
plz reply me
Attachments:
Answered by
5
Hey !!!
1st method
°•° cos2x = cos²x - sin²x
cos2x = cos²x - sin²x / 1
cos2x = cos²x - sin²x / cos²x + sin²x
[•°• cos²x + sin²x = 1 ]
divided by cos²x on numerator and denominator
we get
cos²x- sin²x /cos²x
---------------------------
cos²x + sin²x / cos²x
=> (1 - tan²x) / (1 + tan²x ) Rhs prooved
____________________________
2nd method
cos2x = cos²x - sin²x
cos2x = cos²x - sin²x×cos²x/cos²x ( we can write )
cos²x ( 1 - sin²x/cos²x)
cos²x ( cos²x - sin²x /cos²x)
cos²x ( 1 - tan²x )
( 1 - tan²x)/sec²x
(1 - tan²x )/(1 + tan²x ) Rhs prooved
__________________________
Hope it helps you !!! .
@Rajukumar111
1st method
°•° cos2x = cos²x - sin²x
cos2x = cos²x - sin²x / 1
cos2x = cos²x - sin²x / cos²x + sin²x
[•°• cos²x + sin²x = 1 ]
divided by cos²x on numerator and denominator
we get
cos²x- sin²x /cos²x
---------------------------
cos²x + sin²x / cos²x
=> (1 - tan²x) / (1 + tan²x ) Rhs prooved
____________________________
2nd method
cos2x = cos²x - sin²x
cos2x = cos²x - sin²x×cos²x/cos²x ( we can write )
cos²x ( 1 - sin²x/cos²x)
cos²x ( cos²x - sin²x /cos²x)
cos²x ( 1 - tan²x )
( 1 - tan²x)/sec²x
(1 - tan²x )/(1 + tan²x ) Rhs prooved
__________________________
Hope it helps you !!! .
@Rajukumar111
Similar questions