Math, asked by reddyharshava7696, 1 year ago

Prove that cos 2x ÷( cos x - sin x )= cos x + sin x

Answers

Answered by welcome101
7

Answer:

  \cos(2x)  =  \cos(x + x)  \\   \frac{ cos(x + x)}{ \cos(x)  -  \sin(x) }   =   \frac{ cos {}^{2} (x)  -  \sin {}^{2} (x) }{ \cos(x)  -  \sin(x) }   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:    =  \frac{( \cos(x) +  \sin(x)) \times ( \cos(x) -  \sin(x)    }{(cos(x) -  \sin(x))} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = ( \cos(x)  +  \sin(x))

Similar questions