Prove that cos(3π/4+x)-cos(3π/4-x)=-√2sinx
DarkUnix:
Is it 3pi/(4+x) or [(3pi/4) + x]?
Answers
Answered by
196
Given, cos(3pi/4+x)-cos(3pi/4-x) can be written as,
= cos 3pi/4 cos x - sin 3pi/4sinx - (cos 3pi/4cos x + sin 3pi/4sin x)
= cos 3pi/4 cos x - sin 3pi/4sin x - cos 3pi/4 cos x - sin 3pi/4 sin x
= -2sin 3pi/4 sin x
= -2 * (1/root 2) sin x
= -root 2 sin x
Answered by
202
Thank you for asking this question
Here is your answer:
L.H.S. = Cos(3π/4+x)-cos(3π/4-x)
= cos 3π/4 cos x - sin 3π/4 sin x - [cos 3π/4 cos x + sin 3π/4 sin x]
= cos 3π/4 cos x - sin 3π/4 sin x - cos 3π/4 cos x - sin 3π/4 sin x]
= -2sin 3π/4 sin x
= -2 x (1/√2) sin x
= -√2sin x
If there is any confusion please leave a comment below.
Similar questions