Math, asked by aishwa567, 1 year ago

Prove that cos(3π/4+x)-cos(3π/4-x)=-√2sinx


DarkUnix: Is it 3pi/(4+x) or [(3pi/4) + x]?

Answers

Answered by siddhartharao77
196

Given, cos(3pi/4+x)-cos(3pi/4-x) can be written as,

= cos 3pi/4 cos x - sin 3pi/4sinx - (cos 3pi/4cos x + sin 3pi/4sin x)

= cos 3pi/4 cos x - sin 3pi/4sin x - cos 3pi/4 cos x - sin 3pi/4 sin x

= -2sin 3pi/4 sin x

= -2 * (1/root 2) sin x

= -root 2 sin x

Answered by Shaizakincsem
202

Thank you for asking this question

Here is your answer:

L.H.S. = Cos(3π/4+x)-cos(3π/4-x)

= cos 3π/4 cos x - sin 3π/4 sin x - [cos 3π/4 cos x + sin 3π/4 sin x]

= cos 3π/4 cos x - sin 3π/4 sin x - cos 3π/4 cos x - sin 3π/4 sin x]

= -2sin 3π/4 sin x

= -2 x (1/√2) sin x

= -√2sin x

If there is any confusion please leave a comment below.

Similar questions