Math, asked by thalliboinapraveen20, 3 months ago

prove that cos 37°+ sin37
cos 370-sin 37°
cot 8º.​

Answers

Answered by itzsecretagent
105

\Huge \underline{\mathcal \pink{A}\purple{\frak{nSwer}}}

 \sf{\begin{gathered} LHS = \frac{cos 37\degree + sin 37 \degree }{cos 37\degree - sin 37 \degree} \\= \frac{cos 37\degree + sin (90 - 53) \degree }{cos 37\degree - sin (90- 53) \degree} \\= \frac{cos 37\degree + cos 53 \degree }{cos 37\degree - cos 53 \degree} \\= \frac{ 2 cos \Big( \frac{37+53}{2}\Big) cos \Big( \frac{37-53}{2}\Big) }{ -2 sin \Big( \frac{37+53}{2}\Big) sin \Big( \frac{37-53}{2}\Big) }\\= \frac{ 2 cos \Big( \frac{90}{2}\Big) cos \Big( \frac{-16}{2}\Big) }{ -2 sin \Big( \frac{90}{2}\Big) sin \Big( \frac{-16}{2}\Big) }\\= \frac{ cos 45 \degree cos (-8) \degree }{ - sin 45 \degree sin (-8) \degree } \\= \frac{\frac{1}{\sqrt{2}} \times cos 8 \degree }{ - \frac{1}{\sqrt{2}} \times ( - sin \: 8 \degree ) }\\= \frac{cos 8 \degree }{ sin 8 \degree } \\= cot 8 \degree \\ = RHS \end{gathered}}

Hence proved

Answered by mathdude500
5

\large\underline{\bold{Given \:Question - }}

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \sf \:  \:  \: Prove \:  that  \: \dfrac{cos37 \degree \:  +  \: sin37\degree}{cos37\degree - sin37\degree}  = cot8\degree

\large\underline{\sf{Solution-}}

We know that

 \boxed{ \bf \: cot(x - y) = \dfrac{cotx \: coty \:   +  \: 1}{coty - cotx}}

Now,

Consider LHS,

\rm :\longmapsto\:\dfrac{cos37\degree + sin37\degree}{cos37\degree - sin37\degree}

Divide numerator and denominator by sin37°, we get

 \sf \:  \:  \:  =  \:  \:  \: \dfrac{\dfrac{cos37\degree}{sin37\degree}  + \dfrac{sin37\degree}{sin37\degree} }{ \:  \:  \:  \: \dfrac{cos37\degree}{sin37\degree}  - \dfrac{sin37\degree}{sin37\degree}  \:  \:  \:  \: }

 \sf \:  \:  \:  =  \:  \:  \: \dfrac{cot37\degree + 1}{cot37\degree - 1}

 \sf \:  \:  \:  =  \:  \:  \: \dfrac{cot37\degree \times 1 + 1}{cot37\degree - 1}

 \sf \:  \:  \:  =  \:  \:  \: \dfrac{cot37\degree \times cot45\degree + 1}{cot37\degree - cot45\degree}  \:  \:  \:  \{ \because \: cot45\degree = 1 \}

 \sf \:  \:  \:  =  \:  \:  \: cot(45\degree - 37\degree)

 \sf \:  \:  \:  =  \:  \:  \: cot8\degree

{\boxed{\boxed{\bf{Hence, Proved}}}}

Aliter Method

Consider RHS,

\rm :\longmapsto\:cot8\degree

 \sf \:  \:  \:  =  \:  \:  \: cot(45\degree - 8\degree)

 \sf \:  \:  \:  =  \:  \:  \: \dfrac{cot45\degree \: cot37\degree \:  + 1}{cot37\degree - cot45\degree}

 \sf \:  \:  \:  =  \:  \:  \: \dfrac{1 \times  \: cot37\degree \:  + 1}{cot37\degree - 1}

 \sf \:  \:  \:  =  \:  \:  \: \dfrac{  \: cot37\degree \:  + 1}{ \:  \:  \:  \: cot37\degree - 1 \:  \:  \:  \: }

 \sf \:  \:  \:  =  \:  \:  \: \dfrac{\dfrac{cos37\degree}{sin37\degree}  + 1}{\dfrac{cos37\degree}{sin37\degree} - 1 }

 \sf \:  \:  \:  =  \:  \:  \: \dfrac{\dfrac{cos37\degree + sin37\degree}{ \cancel{sin37\degree}}}{ \:  \:  \:  \: \dfrac{cos37\degree - sin37\degree}{ \cancel{sin37\degree}} \:  \:  \:  \: }

 \sf \:  \:  \:  =  \:  \:  \: \dfrac{cos37\degree + sin37\degree}{cos37\degree - sin37\degree}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

 \boxed{ \sf \: sin(x + y) = sinxcosy + sinycosx}

 \boxed{ \sf \: sin(x  -  y) = sinxcosy  -  sinycosx}

 \boxed{ \sf \: cos(x + y) = cosxcosy - sinxsiny}

 \boxed{ \sf \: cos(x  -  y) = cosxcosy  +  sinxsiny}

 \boxed{ \sf \: tan(x + y) = \dfrac{tanx  + tany}{1 - tanx \: tany}}

 \boxed{ \sf \: tan(x  -  y) = \dfrac{tanx   -  tany}{1  +  tanx \: tany}}

 \boxed{ \sf \: cot(x + y) = \dfrac{cotxcoty - 1}{coty + cotx}}

 \boxed{ \sf \:  {sin}^{2} x -  {sin}^{2} y = sin(x + y)sin(x - y)}

 \boxed{ \sf \:  {cos}^{2} x -  {sin}^{2} y = cos(x + y) \: cos(x - y)}

Similar questions