Math, asked by shagun1743, 1 year ago

Prove that Cos (∏/4 + x) + Cos(∏/4 – x) = 2 Cos x.

Answers

Answered by abhi178
2

prove that,

cos(π/4 + x) + cos(π/4 - x) = √2cosx

LHS = cos(π/4 + x) + cos(π/4 - x)

we know,

  • cos(A + B) = cosA.cosB - sinA.sinB
  • cos(A + B) = cosA.cosB + sinA.sinB

LHS = cos(π/4).cosx - sin(π/4).sinx + cos(π/4).cosx + sin(π/4).sinx

= 2cos(π/4).cosx

= 2 × 1/√2 cosx

= √2cosx = RHS

also read similar questions : sin x + sin^2 x + sin ^3 x =1.Then prove that cos^6 x - 4 cos^4 x + 8 cos^2 x = 4

https://brainly.in/question/1786039

prove that (cos x+ cos y )²+(sin x - sin y )²=4 cos2 (x+y/2)

https://brainly.in/question/4517066

Answered by Anonymous
3

 \huge \fcolorbox{red}{pink}{Solution :)}

We know that ,

 \large \mathtt{ \fbox{Cos(x) + Cos(y) = 2Cos (\frac{x + y}{2})   \times  Cos (\frac{x - y}{2}) }}

Thus ,

 \sf \hookrightarrow Cos (\frac{\pi}{4}   +  x) + Cos (\frac{4}{\pi}  - x) \\  \\ \sf \hookrightarrow 2Cos \bigg(\frac{ (\frac{\pi}{4}  +  x)  + (\frac{\pi}{4} - x)}{2}\bigg)  \times Cos \bigg(\frac{ (\frac{\pi}{4}  +  x)   -  (\frac{\pi}{4} - x)}{2} \bigg) \\  \\  \sf \hookrightarrow 2Cos( \frac{\pi}{4} ) \times Cos(x) \\  \\  \sf \hookrightarrow 2 \times  \frac{1}{ \sqrt{2} }  \times Cos(x) \\  \\ \sf \hookrightarrow   \sqrt{2} \times  Cos(x)

Hence proved

____________ Keep Smiling ☺

Similar questions