Prove that
cos 6x = 32 cos^6 x - 48cos^4 x +18cos^2 x-1
Answers
Answered by
8
Answered by
15
Answer:
cos 6 x = 32 cos⁶ x - 48 cos⁴ x + 18 cos² x - 1 [ Proved ]
Step-by-step explanation:
Given :
cos 6 x = 32 cos⁶ x - 48 cos⁴ x + 18 cos² x - 1
Rewrite cos 6 x as cos 3 ( 2 x ) :
Using multiple angle formula :
cos 3 x = 4 cos³ x - 3 cos x
= > cos 3 ( 2 x ) = 4 cos³ x - 3 cos 2 x
Again multiple angle formula :
i.e. cos 2 x = 2 cos² x - 1
cos⁶ x = 4 ( 2 cos² x - 1 )³ - 3 ( 2 cos² x - 1 )
= > 4 [ ( 2 cos² x - 1 ) ( ( 2 cos² x - 1 )² - 3 ) ]
= > 4 ( 8 cos⁶ x - 12 cos⁴ x + 6 cos² x - 1 ) - 6 cos² x + 3
= > 32 cos⁶ x - 48 cos⁴ x + 18 cos² x - 1
= R.H.S.
Hence proved.
Attachments:
Similar questions