Math, asked by bhagyashrijoshi79, 10 months ago

Prove that -
cos 8º cos 10° cos 12°
-sin 8° sin 10° cos 12° - sin 18° sin 12° =​

Answers

Answered by saloniii20
9

Solve it further.

Hope it helps.

Mark as Brainliest.

Follow me guys.

Attachments:
Answered by abhijattiwari1215
1

Answer:

Value of cos 8⁰ cos 10⁰ cos 12⁰ - sin 8⁰ sin 10⁰ cos 12⁰ - sin 18⁰ sin 12⁰ is √3/2.

Step-by-step explanation:

  • Cosine of sum of two angles a and b is given by:

 \cos( a + b)  =  \cos a \cos  b - \sin a \sin  b

  • Given that:

 \cos{8}^{0}  \cos {10}^{0}   \cos {12}^{0}   -  \sin {8}^{0}  \sin { {10}^{0} }  \cos{12}^{0} \:  -  \sin {18}^{0}  \sin {12}^{0}

  • Taking common cos 12⁰ from first two terms;

( \cos {8}^{0} \cos {10}^{0}  -  \sin {8}^{0}  \sin {10}^{0}  ) \cos{12}^{0} -  \sin {18}^{0}  \sin{12}^{0}

or \:  \cos( {8}^{0}  +  {10}^{0} )  \cos {12}^{0}  -  \sin {18}^{0}  \sin {12}^{0}  \\ or \:  \cos {18}^{0}  \cos {12}^{0}  -  \sin {18}^{0} \sin {12}^{0}

 or \: \cos( {18}^{0}  +  {12}^{0} )  \\ or \:  \cos{30}^{0} =  \frac{ \sqrt{3} }{2}

Similar questions