prove that
Cos 9x - Cos 5x/ sin 17x - Sin3x=
- Sin2x/ cos 10x
Answers
Answered by
6
Answer:
Hey!!
Step-by-step explanation:
LHS = (cos9x - cos5x) / (sin17x-sin3x)
Use the formula,
cosC - cosD = 2sin(C + D) / 2.sin (D-C) /2
sinC - sinD = 2cos (C+D) / 2.sin (C-D) /2
= {2sin (9x+5x) / 2.sin (5x - 9x) / 2} / {2cos(17x+3x) / 2.sin (17x-3x)/2}
=-(sin7x.sin2x) / (cos10x.sin7x)
= - sin2x / cos10x = RHS
Thank you...
Anonymous:
ok :)
Answered by
13
ĀNSWĒR ⏬⏬
THANKS ✌☺
#HarYanvi ThinkeR ♠ ( Nishu )♥
THANKS ✌☺
#HarYanvi ThinkeR ♠ ( Nishu )♥
Attachments:
Similar questions