Prove that cos A/1- tan A + in A/1- cot A = sin A+ cos A
Answers
Answered by
304
Sol:
cos A / (1 - tan A) + sin A /(1 - cot A) = sin A + cos A
LHS = cos A / (1 - tan A) + sin A /(1 - cot A)
= cos A / (cos A - sin A) + sin A / (sin A - cos A)
= cos A / (cos A - sin A) - sin A / (cos A - sin A)
= (cos A - sin A) / (cos A - sin A)
= (cos A + sin A) (cos A - sin A) / (cos A - sin A)
= (cos A + sin A).
Hence proved.
hope this helps.
thank you
cos A / (1 - tan A) + sin A /(1 - cot A) = sin A + cos A
LHS = cos A / (1 - tan A) + sin A /(1 - cot A)
= cos A / (cos A - sin A) + sin A / (sin A - cos A)
= cos A / (cos A - sin A) - sin A / (cos A - sin A)
= (cos A - sin A) / (cos A - sin A)
= (cos A + sin A) (cos A - sin A) / (cos A - sin A)
= (cos A + sin A).
Hence proved.
hope this helps.
thank you
Answered by
16
Answer:
cosA+sinA is proved
Step-by-step explanation:
see the attachment
Attachments:
Similar questions