prove that , cos a / 1- tan a + sin a / 1- cot a = sin a + cos a
Answers
Answered by
12
LHS
= cosA/1-(sinA/cosA) + sinA/1-(cosA/sinA)
=cosA/(cosA-sinA)/cosA+sinA/(sinA-cosA)/sinA
=cosA ×cosA/cosA-sinA+(sinA×sinA)/sinA-cosA
=cos^2 A/cosA-sinA + sin^2 A/sinA-cosA
=cos^2 A-sin^2 A/cosA-sinA
=(cosA+sinA) (cosA-sinA)/cosA-sinA
=cosA+sinA
= cosA/1-(sinA/cosA) + sinA/1-(cosA/sinA)
=cosA/(cosA-sinA)/cosA+sinA/(sinA-cosA)/sinA
=cosA ×cosA/cosA-sinA+(sinA×sinA)/sinA-cosA
=cos^2 A/cosA-sinA + sin^2 A/sinA-cosA
=cos^2 A-sin^2 A/cosA-sinA
=(cosA+sinA) (cosA-sinA)/cosA-sinA
=cosA+sinA
Answered by
7
Answer:
Step-by-step explanation:
Attachments:
Similar questions